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History of the discovery of Burkitt lymphoma (BL)

In 1958, Denis Burkitt described the cancer that is now 
known as BL (1). Although at first thought to be a sarcoma, 
BL was subsequently identified as a non-Hodgkin B cell 
lymphoma. The cancer typically presents extranodally 
and it was the unique presentation in the jaws of children 
that initially caught Burkitt’s attention. The finding that 
BL was restricted geographically, led to initial speculation 
that the tumor was caused by a mosquito borne virus (2,3). 
Denis Burkitt presented his observations of the tumor at 
Middlesex Hospital in London. In the audience was Tony 
Epstein who, intrigued by the idea of an infectious etiology 
of the cancer, initiated a collaboration with Burkitt. This 
ultimately led to the identification of the virus, Epstein-Barr 
virus (EBV) (4), the first virus shown to be associated with 

cancer in humans. Since these initial discoveries, research 
on the role of EBV and BL continues to contribute to our 
understanding of oncogenesis and the role of viruses in 
driving malignancy. 

Epidemiology of BL

Three clinical variants of BL have been described based 
on the epidemiology of the cancer: endemic, sporadic and 
immunodeficiency-associated (ID). The most common, 
and the variant initially described by Burkitt, is the 
endemic form of BL. Endemic BL (eBL) is a pediatric 
cancer with a peak incidence between 6–8 years of age and 
a predominance in males (5,6). eBL is found in regions 
of the world where malaria transmission is year-round, 
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predominantly sub-Saharan Africa and Papua New Guinea 
(6-9). eBL presents extranodally, frequently in the jaw in 
younger children and abdominally in older children (10). 
Recent studies indicate a changing pattern of presentation 
with less tumors occurring in the jaw than historically 
reported (11). EBV is detected in ~95% of cases (12,13). 

In contrast to eBL, cases of sporadic BL (sBL) occur 
throughout the world. It is a rare malignancy and can occur 
in both children, young adults as well as the elderly (14,15). 
sBL represents ~50% of childhood lymphomas but less than 
3% of all lymphomas in USA and Western Europe (16). The 
incidence of sBL in US children was reported to be 2.5 cases  
per million person-years (17). In contrast to eBL, EBV is 
detected in only 10–30% of sBL (18,19). In one study, 38% 
of pediatric sBL were found to be EBV-positive (20). sBL, 
like eBL, also occurs more frequently in males, typically 
presents within the abdominal region and is found in lymph 
nodes as well as extranodally (19).

A third subtype of BL emerged along with the HIV 
epidemic, HIV-associated BL (also called AIDS-related 
and more recently defined as ID-BL). HIV-associated 
BL occurs early in HIV infection and before CD4+ T cell 
numbers drop (21,22). The incidence of HIV-associated 
BL has remained stable in the US since the introduction 
of combination antiretroviral therapy for HIV (23). This 
form of BL has 20–40% of cases that are EBV positive (24). 
However, the frequency of EBV+ tumors has been reported 
to be as high as 71% in a case series from Brazil (25). There 
are also a few case reports describing the occurrence of BL 
in post-transplant immunodeficient patients but this cancer 
is not common in this setting (26-29). 

A different epidemiologic pattern of BL is found in 
South America where EBV is detected in approximately half 
of the cases of all ages (25,30-32). Some studies provided 
comparison of EBV positivity in BL occurring in children 
<5 years to children 5–16 years (33,34). Only children 
less than 5 years of age are consistently EBV+. This is in 
sharp contrast with eBL where there is no age dependent 
segregation of EBV positivity in children (20). Interestingly, 
the prevalence of EBV in BL varies between different 
regions within Brazil with regions in the North showing a 
higher frequency of EBV+ BL (25). 

The variable association of the BL epidemiologic subtypes 
with EBV presents a challenge to our understanding of the 
etiology of this malignancy. Some have argued that because 
EBV is not consistently detected in different BL subtypes, 

EBV plays a non-pathogenetic role (35,36). However, 
as will be reviewed below, an argument can be made for 
distinguishing BL based on the presence or absence of EBV, 
not on the epidemiology of the tumor (e.g., sporadic vs. 
endemic). This has important implications for understanding 
the etiopathogenesis of the different BL clinical subtypes. 

Pathology of BL

Part of the challenge in determining whether the endemic 
and sporadic forms of BL are distinct entities is the consistent 
histologic description of these tumors regardless of their 
epidemiologic origins. Dennis Wright was the first to 
describe the so-called “starry sky” appearance that is readily 
observed in cytologic preparations (37). This feature is due 
to the presence of a high mitotic index, marked apoptosis, 
and presence of tingible body macrophages. According to 
the WHO classification, BL are composed of monomorphic 
CD19+CD20+ B cells with basophilic cytoplasm (19), 
commonly IgM+ (38,39) and a Ki-67 score of ≥95% (19). B 
cell lineage markers indicative of centroblasts are seen (e.g., 
CD10, BCL6, CD38bright) (38,40) and germinal center gene 
expression program are also found (41) consistent with BL 
derived from centroblasts. Gene expression profiling of the 
different BL subtypes identified a common transcriptional 
program that is distinct from other non-Hodgkin B-cell 
lymphomas such as diffuse large B-cell lymphoma and with 
a profile similar to a germinal center B-cell origin (41-43).  
This molecular definition of BL, while important for 
understanding etiopathogenesis and development of new 
therapeutic approaches, is not feasible for routine diagnostic 
purposes. 

All BL express high levels of MYC and greater than 90% 
have the characteristic translocation of the MYC oncogene 
(8q24) onto the immunoglobulin heavy (IgH) (14q34) in the 
majority of cases (>85%) [reviewed in (44)]. Infrequently, 
MYC translocates to the immunoglobulin light chain 
κ (2p12) or λ (22q11) locus (45). The translocation of 
MYC near immunoglobulin regulatory regions results in 
constitutive expression of MYC. MYC transcription is driven 
from the translocated allele (44,46). The chromosomal 
break points in both MYC and IgH vary between sBL and 
eBL (20) which argues for a different etiologic driver. 
The MYC translocation resulting in constitutive MYC 
expression is thought to be a key pathogenetic event leading 
to the emergence of a malignant clone (47).
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The role of EBV

Despite almost 60 years since the discovery of EBV in a 
BL tumor cell, there are still many unsolved questions 
as to how EBV contributes to BL oncogenesis. The viral 
genome is detected in the majority of eBL cases (12,19). 
Subsequent analysis of EBV genomes in the tumor cells 
showed that the viral genome was clonal indicative that 
EBV infection preceeded the malignant transformation 
event (48). In a seminal prospective study in Uganda in the 
1970’s, antibodies to EBV viral capsid antigen (VCA) were 
increased significantly prior to the emergence of the tumor 
providing further evidence of EBV’s causal role (49). Loss 
of the EBV genome from BL cell lines results in apoptotic 
cell death (50,51). In addition, EBV encodes several latent 
proteins [Epstein-Barr nuclear antigen (EBNA)-1, -2, 
-3A, -3C and latent membrane protein (LMP)-1] that are 
essential for B-cell transformation [reviewed in (52)].

One of the paradoxes of determining EBV’s role in BL 
oncogenesis is the fact that only one EBV latent protein, 
EBNA-1, is consistently expressed in BL (53). Studies 
to examine the transforming capacity of EBNA-1 have 
yielded differing results. Wilson generated a transgenic 
mouse that expressed EBNA1 which resulted in B cell 
lymphomas (54). However, Kang et al., was not able to 
reproduce this result (55). It should be noted that different 
mouse strains and different constructs for generation 
of EBNA-1 transgenic mice were used in these two 
studies. Inhibition of EBNA-1 in BL cell lines results in 
apoptosis (50,55). Consistent with this, Holowaty showed 
that EBNA-1 binds to USP7 (also called HAUSP), a 
deubiquitinase. USP7 binds to p53 and mdm2, stabilizing 
the proteins. Binding of EBNA-1 to USP7 destabilizes 
p53 potentially abrogating apoptotic responses (56). Of 
note, USP7 is mutated in EBV+ BL (39).

In addition to EBNA-1, the RNA-pol III non-translated 
RNAs termed EBV-encoded small RNAs (EBER)-1 and 
EBER-2 are also consistently expressed in BL (57,58) as 
well as all latently infected cells. Because of their high level 
of expression, the EBERs are readily detected by in situ 
hybridization and thus useful for identifying EBV+ cells 
in biopsies. Their functional role in EBV+ BL remains 
controversial. Takada and colleagues used an EBV+ BL cell 
line, termed Akata, that over time lost the EBV episome. 
They were able to show that introduction of EBER-1 
restored resistance to apoptosis in this line via induction 

of BCL-2 (59). While this is an important study, it also 
highlights the challenge with addressing requirements for 
EBV-encoded RNA or EBV latent proteins in malignant 
transformation by using cell lines which are typically 
derived from BL biopsies and thus, not representative of a 
pre-malignant state where EBV is most likely to contribute 
to oncogenesis. 

EBV-encoded BART miRNAs are also detected in EBV+ 
BL (57,60-62). The presence of the BART miRNAs in 
EBV+ BL was associated with a different transcriptional 
program (63) pointing to a possible oncogenic role. Forced 
loss of the EBV episome followed by expression of BART 
miRNAs rescues the cells from apoptosis via inactivation 
of CASP3 (64). Further evidence of an important role for 
miRNAs in BL comes from a study by Mundo et al. (65) 
where they were able to detect EBV miRNA in EBER-
negative BL cells. 

Other EBV latent and lytic transcripts and/or proteins 
have been detected in BL (57,58,66) but detection of these 
other viral transcripts is sporadic, not in the majority 
of tumor cells and the potential role for expression of 
these additional EBV transcripts in oncogenesis is not 
clear. There is one study that shows that detection of the 
immediate early protein, BZLF1 (also called ZEBRA) 
correlated with improved response to treatment (67). A 
subset of BL was identified that have a deletion of EBNA-
2 gene and but express EBNA-3C (68) suggesting that 
EBNA-2, a MYC antagonist, needs to be downregulated 
either through transcriptional repression or through 
deletion. 

A common theme emerges from a number of studies 
suggests that a prime role for EBV is to disarm apoptotic 
triggers in B-cells such as the over-expression of MYC (69).  
The corollary idea is that following disarmament of 
apoptosis, the requirement for expression of any EBV gene is 
unnecessary (36,70). 

For the EBV− BL subtype, a hit and run mechanism 
has been proposed where EBV plays an initiating role in 
oncogenesis but the viral genome is lost (70,71). Two recent 
studies identified “traces” of EBV infection in BL primary 
tumors where they detected EBV miRNA but not EBER 
(65,72). This raises the intriguing possibility that EBV− 
BL are actually derived from EBV-infected B cells which 
because of the absence of EBERs, a potential link with EBV 
can be missed. Analysis of cellular mutations in EBV− BL 
also has led to the hypothesis that EBV can be lost because 
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compensatory mutations have occurred that substitute for 
the functions of EBV proteins (70). However, other studies 
that have identified unique gene expression profiles (GEPs) 
between EBV+ and EBV− BL (41) and evidence of ongoing 
somatic hypermutation in EBV+ BL but not in EBV− BL 
(39,73) which argue for different pathogenetic mechanisms 
driving the emergence of EBV+ and EBV− BL. 

One possibility that has been addressed by a number of 
groups is whether there is a particular strain or variant of 
EBV associated with BL that had more oncogenic potential. 
However, the results have not been consistent and this 
question remains open. For example, Bhatia and colleagues 
classified five EBNA-1 subtypes and proposed that the 
V-leu subtype was more common in both BL as compared 
to healthy controls (74). However, a subsequent study by 
Rickinson and colleagues found no evidence of a selection 
of a particular EBNA-1 subtype in BL cases compared to 
controls (75). Similarly, Moormann and colleagues reported 
no evidence of a promoter variant, the ZpV3, in BL cases 
versus controls (76), while Kenney and colleagues did (77). 
Conversely, Grande et al. found no evidence of a bias towards 
EBV type 1 predominating in eBL (39) while Kaymaz et al. 
did (78). Earlier studies on HIV-associated and eBL found 
equal distribution of EBV types 1 and 2 (79) while BL cases 
in Brazil had a predominance of EBV type 1 (25). Unique 
variants of the LMP-1 have also been reported in eBL 
compared to controls (80,81). An important challenge in 
addressing this critical question is identifying the appropriate 
control population as a reference for the EBV genome 
strain(s) circulating within a population. 

Because both strains of EBV are found in BL, an interesting 
question was whether there were cellular mutation differences 
in BL carrying either EBV type 1 or type 2. In one study, 
EBV type 2+ BL had less mutations in key genes compared 
to EBV type 1 (73,78). In contrast, Grande et al. (39)  
did not find genes that were differentially mutated in BL 
carrying either EBV type 1 and type 2 BL. Further studies 
on larger panels of BL tumors are required to resolve these 
discrepant results. It is possible that variations in EBV type 
between different geographic regions within sub-Saharan 
Africa could also account for these differences. 

Activation-induced cytidine deaminase (AID)  
and BL

When the MYC translocation was first identified, there 

was speculation that it was mediated by the VDJ B cell 
recombinase used in the recombination of the variable 
and joining regions of the immunoglobulin genes (44). 
However, in 2008, Robbiani and colleagues provided the 
first evidence that the enzyme, activation induced cytidine 
deaminase (AID) (also called AICDA), was a cause of the 
MYC translocation (82). AID is the critical enzyme for 
somatic hypermutation and class switch recombination of 
immunoglobulin genes, key features in the generation of 
adaptive humoral immunity [reviewed in (83)]. AID induces 
point mutations by deaminating cytidine to uracil. Because 
of this, it is easy to identify cellular mutations as being 
caused by AID. AID can also induce DNA breaks in the 
immunoglobulin genes. 

Because of the potential danger to the cell of having 
an enzyme capable of modifying the genome, AID is 
regulated not only at the transcriptional level, but also 
through translational, post-translational and sub-cellular 
localization (84). AID is also tightly regulated during B cell 
differentiation and expressed only in germinal center B cells 
in health (85). Evidence that both EBV and Plasmodium 
falciparum, etiologic co-factors in eBL, can aberrantly 
induce AID comes from both animal and cell culture 
models. Plasmodium infection alone can induce aberrant 
AID expression in B cells outside of the germinal center 
reaction in a mouse model of Plasmodium (86). Extracts 
from P. falciparum infected red blood cells were also shown 
to induce AID expression (RNA and protein) in tonsil B 
cells (87). More direct evidence of Plasmodium comes from a 
study by Robbiani et al. (88) where they repeatedly infected 
p53 deficient mice with Plasmodium chabaudi and induced 
lymphomas that had the characteristic MYC translocation 
on the IgH. Using an AID knockout mouse, they then 
showed that the capacity to induce a translocation was 
dependent on AID. Overexpression of MYC in normal B 
cells results in stress response apoptosis mediated by p53, 
ATM and p19 (89) suggesting that even if AID induces off-
target translocation of MYC in normal cells, these cells will 
likely undergo apoptosis. Of note in the Robbiani study, no 
tumors occurred in mice in the absence of p53 implying that 
abrogation of apoptotic pathways is critical to emergence of 
the malignant cell in BL. 

The story with EBV and AID activation is a bit more 
complicated. EBV infection of B cells ex vivo induces AID 
activity (90). Consistent with this, both the EBV LMP-
1 as well as the EBNA-3C induce AID expression (91-93). 
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AID was functional in these experiments as evidenced by 
accumulation of point mutations (91) as well as induction 
of T-cell independent class switching (92). LMP-1 
induction of AID was indirect through upregulation of Egr-
1 transcription factor (93). EBNA-3C was shown to bind 
directly to regulatory elements in the AICDA gene that 
encodes AID (91). However, overexpression of EBNA-
2 inhibited AID expression (94) potentially counteracting 
LMP-1 and EBNA-3C induced AID activity. Moreover, 
EBV+ BL do not typically express LMP-1, EBNA-3C or 
EBNA-2 so if there is an EBV mediated effect on AID it 
preceedes oncogenesis. 

Three studies in humans point to dysregulated AID 
expression in populations at risk for BL. First, Torgbor 
et al. (87) found AID frequently expressed in the tonsil 
lymphocytes of children from a malaria endemic region of 
Ghana but not in tonsil lymphocytes from children living in 
the US. In a study based in Kenya, elevated AID expression 
was correlated with peripheral EBV loads in children with 
repeated exposure to malaria (95). Elevated expression of 
AID in peripheral blood lymphocytes was detected prior 
to the emergence of BL in HIV+ patients (90) suggesting 
that dysregulation of AID is an early step prior to the MYC 
translocation. This is critical point as it leads to a hypothesis 
that chronic immune activation, regardless of inciting agent 
(e.g., viral or parasite) can drive the MYC translocation (96).

More recently, in a landmark paper, Staudt and colleagues 
sequenced DNA from over 100 EBV+ and EBV− BL 
biopsies and through analysis of both genome sequences and 
transcriptome data found that the genome wide mutational 
load was increased significantly in EBV+ BL compared to 
EBV− BL regardless of the epidemiology of the tumor (39).  
They hypothesized that the increased mutations were 
due to increased AID activity based on analysis of the 
point mutations that clearly have the mark of the cytidine 
deaminase. AID was also more highly expressed in eBL than 
in sBL. A subsequent study by Panea et al. (73) also found 
that EBV+ eBL had a mutational burden indicative of AID 
activity. 

Other co-factors

When EBV was first discovered, it was thought (and hoped) 
that this would be the answer to understanding BL and 
possibly preventing BL. Unfortunately, EBV is a necessary 
but not sufficient cause of the malignant transformation 

that occurs in the EBV+ BL. As observed by Burkitt and 
colleagues early on, there was a clear epidemiologic link 
between cases of BL and endemic malaria transmission (97) 
and confirmed in later studies (7,98). However, it wasn’t 
until the 2000’s that we had a causal link both in the case 
control studies of Newton and colleagues in Malawi and 
Uganda where children with eBL had higher titers of anti-
malaria antibodies as compared to controls (99,100). In 
addition, Robbiani by repeatedly infecting p53−/− mice with 
P. chaubadi, showed AID-dependent MYC translocated 
lymphoma similar to BL in humans (88). Combined, these 
studies provide the strongest evidence for a causal role of 
malaria in BL. 

Within the context of both P. falciparum malaria and 
HIV, there is also a possible role for immunosuppression of 
EBV-specific responses. For example, Whittle et al. (101)  
demonstrated that peripheral blood lymphocyte (PBL) 
isolated from adult patients with acute malaria were 
unable to control outgrowth of EBV-transformed cells in a 
standard but relatively crude regression assay to assess EBV-
specific T cell function. Moss et al. (102) demonstrated 
that healthy adults living in malaria holoendemic regions 
of Papua New Guinea had impaired EBV-specific T cells 
responses using the same regression assay. In children 
experiencing an episode of acute malaria, spontaneous 
outgrowth of EBV-transformed B cells ex vivo occurred at 
greater frequency (103). More recent studies show loss of 
EBV specific cytotoxic T lymphocyte (CTL) responses to 
lytic antigens in children living in a malaria holoendemic 
region (104) and a specific loss of IFNg CTL responses to 
EBNA-1 in eBL patients (105). A model put forward by 
Liu et al. (106) proposes that repeated infections with one 
pathogen (for example, Plasmodium) weakens the total CTL 
memory, such that established CTL memory to a different 
pathogen (such as EBV) will be diminished and ultimately 
collapse. This model could explain loss of EBV-immunity 
that has been reported in the above studies and could also 
account for how chronic antigen stimulation from not only 
P. falciparum but also other pathogens such as HIV could 
contribute to the emergence of BL. 

If P. falciparum malaria and EBV act in concert to drive 
eBL, what are the factors that drive the other clinical 
variants of BL? One possibility is that factors that induce 
chronic activation of B cells and aberrant AID expression 
could trigger the MYC translocation. This model relies 
on B cell receptor (BCR) stimulation through extrinsic 
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activation. Evidence of antigen selection of BCR in BL in 
both mouse models (107) and in humans (108) is found and 
suggests that other chronic infections including HIV could 
trigger lymphomagenesis (41,109). In contrast, analysis 
of BCR signaling in sBL is more indicative of mutations 
that allow tonic BCR signaling and not necessarily antigen 
selected (107,110). Because of the relatively low incidence of 
sBL, understanding the etiology becomes more challenging 
and has not been extensively explored. But it is clear that 
for all variants of BL, a MYC translocation and evasion of 
apoptosis are critical steps on the oncogenic pathway. 

Defining BL based on the presence or absence 
of EBV

With the advent of more comprehensive “omic” techniques 
to evaluate the mutations in the cellular genome and define 
transcriptional profiles, these techniques have now been 
applied by several groups to identify molecular pathways 
that are disrupted in BL [(110-113), reviewed in (36)]. 
Common pathways dysregulated in BL include tonic B-cell 
receptor signaling, phosphoinositide 3-kinase (PI3K) 
pathway, and cyclin D3/CDK6 as well as mutations in the 
tumor suppressor, ID3, diminishing its function. Activating 
mutations in TCF3, a negative regulator of ID3 are also 
observed pointing to the critical importance of this pathway 
in driving cell proliferation. Other common mutations in 
BL include ARID1A and SMARCA4, part of the SWI/SNF 
family and involved in nucleosome remodeling. In addition, 
mutations are found in MCL1, FBX011, DDX3X, CCND3 
as well as TP53 and MYC. 

A challenge in compiling a comprehensive picture of 
the genomic landscape of BL is that while translocation of 
MYC and subsequent overexpression of MYC is the primary 
pathogenetic event, cellular mutations (e.g., deletions, 
amplifications, point mutations) evolve independently 
to target different cellular pathways (e.g., proliferation, 
apoptosis ,  immune escape).  Genotype-phenotype 
correlations along with clinical correlations are needed 
to define the spectrum of mutations in BL and move into 
the field of precision medicine. And while, as noted above, 
certain patterns are emerging that shed light on the genetic 
basis of BL, it has becoming increasingly clear that the 
presence or absence of EBV in the lymphoma is the feature 
that defines other molecular differences (39). With this 
point in mind, it useful to go back and look at the reported 

differences in studies that compared eBL (almost always 
EBV+) and sBL (almost always EBV−) through the lens 
that EBV is the defining feature. Table 1 summarizes these 
studies and with this information a clear picture emerges of 
the molecular differences between EBV+ and EBV− BL. 

The first key molecular difference in eBL vs. sBL was the 
breakpoint differences in the MYC translocation. In eBL, 
the translocation occurs 5’ of the MYC coding region while 
in sBL, the translocation typically occurs within the 1st 
intron or exon (20,117,118). Bellan and colleagues analyzed 
eBL, sBL and ID-BL for rearranged immunoglobulin 
heavy chain (VH) genes and compared them to germline VH 
segments (114). They found that the EBV+ BL regardless 
of epidemiologic origin, had more somatic mutations and 
evidence for antigen selection while the EBV− BL had only 
a small number of somatic mutations. Follow-up studies 
using next-generation sequencing (NGS) of Ig genes 
found intraclonal diversity supports a model for antigen-
driven selection of BCRs in eBL (108). A subsequent GEP 
comparing eBL to sBL identified both similarities such that 
all BL were distinct from other non-Hodgkin lymphoma 
but also differences with 74 unique genes expressed in eBL 
but not sBL (41). An additional study evaluated EBV+ 
and EBV− ID-BL and again found differences, notably in 
19 cellular miRNAs that were upregulated in the EBV+ 
BL compared to the EBV− BL (61). Both eBL and sBL 
had mutations in the forkhead box subtype (FOXO) 
transcription factor but there were differences in the 
presence of a mutation in the AKT recognition motif with 
T24 mutation common in sBL while the S22 was common 
in eBL (115). And as noted earlier both Grande and Panea 
identified evidence of AID mutation activity in EBV+ but 
it was not as extensive as in EBV− BL (39,73). In addition, 
Abate et al. (58) found evidence of decreased mutations 
in MYC, ID3, TCF3 and TP53 in EBV+ BL compared 
to EBV− BL while an increase in mutations in ARID1A, 
RHOA and CCNF. In addition, they also reported that the 
TCF3 target genes are more activated in EBV− BL (58). 
Interestingly, in EBV+ BL, noncoding mutations were in 
regulatory regions and likely due to AID activity (39). In 
this same study, they also found that mutations in apoptotic 
pathways defined EBV− BL but not EBV+ BL consistent 
with a hypothesis that one of EBV’s role in etiopathogenesis 
of BL is to abrogate apoptotic pathways. 

An analysis of human miRNA in BL subtypes while 
finding differences in 38 miRNAs between BL and diffuse 
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Table 1 Comparison of molecular differences between EBV+ and EBV− BL#

Study Analysis/sample type* EBV+ EBV−

Bellan et al. (114) Mutation rates in VH 6.1 average mutation frequency in 
VH

1.4 average mutation frequency in 
VH

Sequence analysis of CDR2 
region for evidence of antigen 
selection

11/18 evidence antigen selection 0/13 evidence of antigen selection

Piccaluga et al. (41) Gene expression profile (GEP) 74 unique genes including 
BCR, TNFα/NF-κB, interleukin-
dependent cascades

–

eBL vs. sBL ↑miRNA –

EBV+ vs. EBV− for miRNA ↑RBL12 network genes –

GC gene profile GC gene profile

Navari et al. (61) GEP miRNA profile Enrichment for metabolic 
processes

↓27 miRNA

EBV+ vs. EBV− ID-BL ↑has-miR-142-5p

Zhou et al. (115) Sanger sequencing of eBL and 
sBL, NGS of sBL

Mutations in FOX01 Mutations in FOX01

eBL 100% EBV+ Mutations in S22 and distal to 
AKT recognition

Mutations in T24 phosphorylation 
site

Amato et al. (108) RNA seq/NGS sequencing of Ig 
genes

↓Mutation frequency of TCF3/ID3 ↑Mutation frequency of TCF3/ID3

eBL vs. sBL Intraclonal diversity

Grande et al. (39) Whole genome sequencing, RNA-
seq, miRNA-sea

↑Mutation load per genome ↓Mutation load

↑Proportion of AID associated 
mutations

↑TP53 mutations

↑AID expression –

Mutations in SIN3A, USP7, CHD8 –

↓Driver mutations esp. in 
apoptosis genes

–

↑Noncoding mutations ↑Coding mutations

Giulino-Roth et al. (113) NGS Less likely to have genetic 
alterations

More likely to have multiple 
genetic alterations

Pediatric BL

Abate et al. (58) RNA seq ↓Mutations in MYC, ID3, TCF3, 
TP53, DDX3X, CCND3

Mutations in MYC, ID3, TCF3, 
TP53

eBL vs. sBL ↑Mutations in ARID1A, RHOA, 
CCNF

TCF3 pathway more activated

TCF pathway analysis on EBV+ 
vs. EBV−

Table 1 (continued)
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large B-cell lymphoma, also identified 6 miRNAs that 
were different between eBL and sBL (116). A subsequent 
study confirmed this observation that the differences were 
between EBV+ and EBV− BL and also found 10/18 targets 
of has miR-127 that were upregulated in EBV+ BL (41).

Since the discovery of EBV, the question has remained 
whether EBV is the driver or passenger on the road to 
malignant transformation of B-cells in BL. The theme 
emerging from the molecular analysis of BL is that the 
presence or absence of EBV is a defining feature of the 
clinical variant regardless of the epidemiology of the tumor. 
And that the convergence of similar pathology of clinical 
variants now shows that there are molecularly distinct 
EBV+ and EBV− entities. With this knowledge, we are still 
challenged to understand where in the B-cell differentiation 
pathway does EBV induce premalignant changes and 
increase susceptibility to malignant transformation.

In Figure 1, a model of etiologic pathways of EBV+ and 
EBV− BL is presented. In this model and consistent with 
pathologic findings, BL starts as a germinal center B cell, 
likely a centroblast. Both pathways posit 4 key features: 
(I) suppression of apoptosis, (II) activation of AID, (III) 

MYC translocation and (IV) accumulation of additional 
mutations that enhance cell proliferation/survival/growth. 
Where they differ is that EBV likely induces AID and 
accumulation of point mutations that distinguish the 
EBV+ and EBV− BL (39). Another key difference is the 
role of EBV in suppressing apoptotic pathways for EBV+ 
BL while mutations in ID3/TCF3/p53 play that role in 
EBV− BL (58). The steps in these two pathways remain to 
be fully elucidated.

Conclusions

Guy de-Thé once called BL the Rosetta Stone of  
cancer (120). Through the study of this cancer first 
identified in Uganda, scientists have uncovered the first 
human cancer virus, developed the first human B cell line, 
identified the first human oncogene, and developed new 
models for cancer treatment that relied on chemotherapy 
alone. As we move further into the 21st century, BL is 
still serving as our guide as we uncover the mechanisms 
of oncogenesis and the differences in etiopathogenesis of 
EBV+ compared to EBV− BL.

Table 1 (continued)

Study Analysis/sample type* EBV+ EBV−

Panea et al. (73) Whole genome sequencing, RNA 
seq

↑Mutation load per genome ↓Mutation load

↑Proportion of AID associated 
mutations

↑Mutations in BCL7A, BCL6

↓Mutations in DNMT1, SNTB2, 
CTCF

Kaymaz et al. (78) RNAseq, gene set enrichment 1,658 diff expressed genes –

↓PTEN suppressed

↑DNA replication, mismatch 
repair, cell cycle regulation

Lenze et al. (116) miRNA microarray ↑10/18 targets of miR-127 –

eBL vs. sBL ↑hsa-miR-10b, -216b, -499-3p ↑hsa-miR-191, -374a, -193-5p

AID, activation-induced cytidine deaminase; BCR, B cell receptor; BL, Burkitt lymphoma; eBL, endemic Burkitt lymphoma; EBV, Epstein-
Barr virus; GEP, gene expression profile; ID-BL, immunodeficiency-associated Burkitt lymphoma; GC, germinal center; NGS, next-
generation sequencing; sBL, sporadic Burkitt lymphoma. 
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Figure 1 Model for etiology of EBV+ and EBV− BL. For EBV+ BL, EBV infection of the B-cell through epigenetic modifications results 
in methylation of tumor suppressor Bim, a pro-apoptotic gene, and renders the cell resistant to pro-apoptotic signals (119). The red dot 
indicates EBV; the Ig-MYC translocation and the darker nucleus indicate acquisition of mutations. EBV proteins can induce AID resulting 
in accumulation of point mutations in the genome. Chronic antigenic stimulation such as occurs in areas where malaria infection occurs 
repeatedly throughout childhood results in further induction of AID and the hallmark MYC translocation onto the Ig heavy chain enhancer. 
Additional mutations in oncogenes arise that result in the emergence of a malignant clone. It is likely that these additional mutations occur 
later in the oncogenic pathway as there is not a consistent mutational pattern. The triggers for the original mutations that occur in EBV− BL 
are unknown. Shown is a possible link with loss of the EBV episome (termed a hit and run) that could be the first step in some cases of BL. 
The transcription factor, TCF3 is activated through mutations and the upregulation of TCF3 is found in most cases of BL (cite Schmitz/
Staudt). In this model, TCF3 activation is indicated as an early step in oncogenesis prior to MYC translocation as the upregulation of TCF3 
would alter transcriptional profile of the pre-malignant cell to prevent apoptosis induced by over-expression of MYC. EBV, Epstein-Barr 
virus; BL, Burkitt lymphoma; AID, activation-induced cytidine deaminase; GC, germinal center.
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