
Page 1 of 11

© Annals of Lymphoma. All rights reserved.   Ann Lymphoma 2019;3:4aol.amegroups.com

Introduction 

Mantle cell lymphoma (MCL) is an uncommon subtype of 
B-cell non-Hodgkin lymphoma (NHL) with an incidence 
of approximately 0.5 cases per 100,000 person-years in 
the United States and Europe (1). While up to 30% of 
patients with MCL may have an initially indolent clinical 
course (2,3), in the majority, MCL displays more aggressive 
behaviour and often requires treatment soon after diagnosis. 
Until recently, patients with relapsed or refractory (R/R) 
disease after chemoimmunotherapy had limited treatment 
options, and MCL to this day bears one of the poorest 
prognoses of all lymphomas (4-6). 

As a key regulator of apoptosis, the pro-survival protein 
BCL2 was first implicated in the pathogenesis of follicular 
lymphoma (FL) in 1984 (7,8). Since then, BCL2 has been 

recognised to be involved in many other B-cell NHLs, 
including chronic lymphocytic leukaemia (CLL) (9) 
and MCL (10), and to be a promoter not only of cancer 
development (11), but also of resistance to chemotherapy (12). 
The identification of apoptotic avoidance as a hallmark of 
cancer (13) sparked the recognition that therapies designed 
to restore the capacity of cancer cells to undergo apoptosis 
could be effective in the treatment of malignancies that 
depend on the derangement of the normal apoptotic 
machinery for their survival. 

BH3 mimetics are small molecules that mimic the action 
of naturally-occurring BH3-only proteins, the endogenous 
antagonists of BCL2 and other pro-survival family 
members. Venetoclax (ABT-199) is a BH3 mimetic that 
directly and specifically inhibits BCL2 (14,15), restoring 
the ability of cancer cells with BCL2 overexpression to 
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undergo apoptosis. Venetoclax has shown promising results 
in clinical trials, particularly when used against CLL and 
MCL (15,16). In this review, we discuss the pre-clinical and 
early-phase clinical data supporting the use of venetoclax in 
MCL and review the next steps in the clinical application of 
this novel targeted therapy to improve outcomes for MCL 
patients. 

A primer on apoptosis and the history of BCL2 
targeted therapy

In multicellular organisms, programmed cell death is 
essential for the elimination of unwanted, infected, or 
otherwise damaged cells (17,18). The major mode of 
programmed cell death is apoptosis, a highly regulated 
process characterised by shrinkage of the nucleus and 
cytoplasm, and encasement of cellular contents within 
apoptotic bodies surrounded by plasma membrane that are 
ultimately cleared by nearby phagocytes (19). Apoptosis 
is terminally mediated by a family of proteases called 
caspases that have a cysteine at their active site and cleave 
target proteins at specific aspartic acids (20). Apoptotic 
signals activate initiator caspases, which then cleave and 
activate executioner caspases, which in turn cleave specific 
target proteins, such as nuclear lamins, leading to cellular 
destruction. 

Initiator caspases are activated by one of two independent 
but convergent pathways: (I) the death receptor-mediated 
pathway (also called the extrinsic pathway); or (II) the 
mitochondrial pathway (also called the intrinsic pathway) 
(21,22). The death receptor-mediated pathway is activated 
when death receptor ligands from the tumour necrosis factor 
(TNF) family, such as FAS ligand and TNF, bind to their 
cognate death receptors on the plasma membrane, resulting 
in activation of the initiator caspase called caspase 8 (23).

In haematological malignancies, such as MCL, however, 
it is the mitochondrial pathway that is more commonly 
perturbed. The mitochondrial pathway is regulated by 
members of the BCL2 family of proteins, which can be 
divided into three functionally and structurally distinct 
groups: (I) BH3-only proteins (BIM, PUMA, tBID, BAD, 
and NOXA), which initiate apoptosis in response to stress 
signals; (II) their specific pro-survival BCL2 family protein 
partners (BCL2, BCL-XL, BCL-W, MCL1, and BFL1/A1); 
and (III) pro-apoptotic effector proteins (BAX and BAK) (24). 

U n d e r  n o r m a l  p h y s i o l o g i c a l  c o n d i t i o n s ,  i n 
untransformed mature B cells, pro-survival BCL2 family 
proteins bind to the pro-apoptotic effector proteins BAX 

and BAK, preventing them from forming oligomers 
that would otherwise permeabilise the outer membrane 
of the mitochondria and activate a cascade of reactions 
culminating in apoptotic cell death. A diverse range 
of cytotoxic stress signals, such as DNA damage and 
growth factor deprivation, cause transcriptional and post-
translational induction of the BH3-only proteins, which 
carry out their pro-apoptotic function either by neutralising 
their specific pro-survival BCL2 family protein partners, 
thus enabling the oligomerisation of BAX and BAK on the 
mitochondrial outer membrane; or by directly activating 
these pro-apoptotic effector proteins. The oligomerisation 
of BAX and BAK triggers the release of a number of 
apoptogenic factors into the cytosol, including cytochrome 
c, which binds to the scaffold protein APAF1, resulting in 
the formation of the apoptosome (25,26). The apoptosome 
activates an initiator caspase called caspase 9, which in turn 
activates the executioner caspases 3, 6, and 7 (20), resulting 
in apoptotic cell death.

Derangements in the normal apoptotic machinery can 
render a cell resistant to apoptotic signals and contribute to 
oncogenesis. For example, the development of the majority 
of FL depends on a translocation between the long arm 
of chromosome 18 and the long arm of chromosome 14, 
which juxtaposes the BCL2 gene with the immunoglobulin 
heavy chain (IgH) locus, resulting in deregulated expression 
of BCL2 (7,8). Since many cytotoxic therapies induce 
apoptosis by activating BH3-only proteins, elevated 
levels of BCL2 also contribute to therapy resistance (27). 
Paradoxically, however, some cells that overexpress BCL2 
become dependent on or ‘addicted to’ BCL2 for survival, 
making them exquisitely sensitive to BCL2 inhibition, and 
thus, in a sense, ‘primed for death’ (28). 

The discovery of BCL2 addiction in certain cancers 
stimulated the development of small molecules that mimic 
the action of BH3-only proteins such as BIM in neutralising 
BCL2. The most advanced of such BH3 mimetics is 
venetoclax (ABT-199), developed by structure-informed 
reverse engineering of navitoclax, a first-generation BH3 
mimetic that binds to BCL2, BCL-XL, and BCL-W with 
high affinity (Ki <1 nM for all) (29). In a phase I study, 
navitoclax was found to induce a partial response in 35% 
(9/26) of patients with relapsed or refractory CLL (R/R 
CLL), including those with adverse prognostic features, 
such as fludarabine-refractory disease, bulky adenopathy, 
and del(17p) CLL (30). In a separate phase I study of 
navitoclax in patients with a range of NHL, a partial 
response in 22% (10/46) of patients, with a median PFS 
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of 16 months, was observed (31). However, predictable 
thrombocytopenia due to on-target antagonism of BCL-XL, 
the pro-survival protein critical for maintenance of platelet 
viability, limited the ability to escalate the dose of navitoclax 
and precluded its broad clinical application (32). 

Venetoclax was the first BCL2-selective BH3 mimetic 
to be developed. In pre-clinical studies, venetoclax 
demonstrated a sub-nanomolar binding affinity for BCL2 
(Ki <0.010 nM) with three orders of magnitude less avidity 
for BCL-XL (Ki =48 nM) or BCL-W (Ki =245 nM) (14). 
Correspondingly, venetoclax showed the absence of any 
effects on platelets in contrast to navitoclax, enabling 
higher circulating concentrations of the drug to be achieved 
without dose-limiting thrombocytopenia. Venetoclax is 
currently approved in the US for use as monotherapy or in 
combination with rituximab in patients with CLL or small 
lymphocytic lymphoma (SLL), with or without del(17p), 
who have received at least one prior therapy, as well as for 
use in combination with azacitidine, decitabine or low-dose 
cytarabine in patients with newly diagnosed acute myeloid 
leukaemia (AML) who are aged 75 years or older, or who 
have comorbidities that preclude the use of intensive 
induction chemotherapy. The potential to add venetoclax 
to the armamentarium against NHLs, including DLBCL, 
MCL, and FL, is being explored.

MCL: opportunities for targeted therapy

MCL constitutes 6–8% of all NHLs (33,34). The median 
age at diagnosis is 68 years and three-quarters of patients 
are male (35). While there is a small subgroup of patients 
whose disease progresses slowly, in the majority of patients, 
MCL manifests as an aggressive disease, and stage III/IV 
disease is typically present at the time of diagnosis (36).  
Despite the introduction of aggressive multi-agent 
chemoimmunotherapeutic approaches, MCL continues to 
have one of the poorest prognoses of all lymphomas, with a 
median overall survival (OS) of approximately 3 years (37).  
The outcome is especially poor for patients who are older 
with comorbidities or who harbour aberrations in the 
TP53 pathway (38-43). While there have been incremental 
improvements in patient outcome with intensified 
chemotherapeutic approaches, such as the inclusion of 
high-dose therapy and autologous haemopoietic stem 
cell transplantation (HSCT), the treatment of refractory 
or relapsed MCL (R/R MCL) remains a challenge, and 
until recently patients with R/R MCL had few effective 
therapeutic options. 

The genetic hallmark of MCL is the t(11;14)(q13;q32) 
translocation, which places the cyclin D1 gene (CCND1) 
at chromosome 11q13 in close proximity to the IgH 
heavy chain locus at chromosome 14q32, leading to 
overexpression of cyclin D1, a protein that is not normally 
expressed B cells. This genetic alteration facilitates the 
deregulation of the cell cycle at the G1-S phase transition 
by promoting the inactivation of retinoblastoma 1 (RB1) 
and degradation of p27. However, although cyclin D1 
overexpression appears to be the oncogenic driver in 
the overwhelming majority of MCL cases, the failure of 
transgenic mice overexpressing cyclin D1 to develop B cell 
lymphoma suggests that cyclin D1 overexpression alone is 
insufficient to cause transformation of normal B cells (44). 
In addition to dysregulated cell cycle progression, MCL 
cells also demonstrate aberrations in the DNA damage 
response pathway and the cell survival pathway (45). BCL2 
is commonly upregulated in MCL, with up to 93% of 
biopsies from MCL patients exhibiting high expression of 
BCL2 (16), and gain of 18q11-q23, the region where the 
BCL2 gene is located, seen in 11–26% of MCL patients 
(46,47). Homozygous deletions of BIM predisposing to 
avoidance of apoptosis have also been identified in MCL 
cell lines (48). Furthermore, high level of MCL1 expression 
in MCL has been associated with inferior outcomes (49). 
Hence, targeting apoptosis as a novel approach to treating 
high-risk MCL has long been an attractive option. 

Several putative BCL2 inhibitors have been tested in 
MCL, including oblimersen and obatoclax, with modest 
clinical efficacy (50,51). However, these agents do not meet 
the criteria for a true BCL2 inhibitor (52). It was only with 
the emergence of navitoclax and subsequently venetoclax 
that testing of true BCL2 inhibitors for the treatment of 
MCL could commence. 

Pre-clinical results of venetoclax to treat MCL

Given BCL2 overexpression is a feature in many cases 
of MCL, as it is in a number of other haematological 
malignancies, MCL cells are predicted to show a degree 
of BCL2 addiction, leading to heightened sensitivity 
to BCL2 inhibition. In vitro studies demonstrated the 
ability of venetoclax to induce apoptosis in a range of 
haematological cancer cell lines that depend on BCL2 
for survival, including DLBCL, FL, and MCL (14). 
Sensitivity to venetoclax was directly correlated with BCL2 
expression level, with NHL cell lines harbouring BCL2 
gains, BCL2 amplifications, or the t(14;18) translocation 
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demonstrating increased sensitivity to venetoclax compared 
to cell lines without these genetic features (14). In mice 
bearing established MCL tumours, venetoclax was shown 
to enhance the tumour growth delay (TGD) induced by 
combination therapy with bendamustine and rituximab 
(BR), and cause a complete response (CR) in 50% of mice, 
whereas no mice achieved a CR after treatment with BR 
alone. The regimen was well-tolerated in mice with no 
overt signs of toxicity and no significant weight loss (14). 

In the setting of CLL, venetoclax has demonstrated 
promising results in cases harbouring TP53 aberrations 
in the form of either del(17p) or mutation in the TP53 
gene (15), which, as in MCL, are known to be associated 
with inferior outcomes after standard chemoimmunotherapy 
(53,54). Despite confirmed loss of TP53, normal murine 
nodal B cells, human B lymphoblast cell lines, and primary 
CLL cells demonstrated the same sensitivity in vitro to the 
induction of apoptosis by venetoclax in comparison to cells 
with normal TP53 function. In addition, no difference was 
observed in baseline mitochondrial priming or degree of 
BCL2 dependence between CLL samples with or without 
TP53 dysfunction. Consistent with in vitro findings, 
TP53 status failed to predict the depth of compartmental 
responses to venetoclax in patients with CLL. Based on 
impressive response rates, venetoclax has been approved for 
CLL cases with TP53 aberrations. Taken together, these 
findings provide a rational basis for the use of venetoclax 
in the treatment of MCL, particularly those difficult cases 
harbouring TP53 dysfunction. 

Early phase clinical results of venetoclax to 
treat MCL

In a phase I first-in-human study of venetoclax in patients 
with R/R CLL or NHL, impressive activity was observed in 
CLL, MCL, and Waldenström’s macroglobulinemia (WM) 
(16,55,56). In the NHL cohort of the study, patients with 
R/R MCL demonstrated an overall response rate (ORR) 
of 75% (21/28) and a CR rate of 21% (6/28). The median 
PFS was 14 months, with only one progression amongst 
the six complete responders (16). The responses were more 
durable amongst patients who achieved CR than among 
those whose best response was partial remission (PR) (16). 

The maximum tolerated dose (MTD) of venetoclax 
was not reached in the phase I trial in patients with NHL, 
but two dose-limiting toxicities occurred at a dose of  
600 mg of venetoclax: one grade 4 neutropenia in a patient 
with Richter transformation diffuse large B cell lymphoma 

(DLBCL-RT), and one grade 3 febrile neutropenia in a 
patient with DLBCL (16). The recommended phase 2 dose 
(RPTD) was therefore determined by investigators to be 
800 mg for MCL on the basis of significant activity at this 
dose and risk of incremental toxicity with dose escalation 
above this level (16). Of the 106 patients enrolled, 
three patients with bulky disease (maximal lymph node  
diameter >10 cm) demonstrated biochemical changes 
meeting the Cairo-Bishop criteria for laboratory tumour 
lysis syndrome (TLS) (16,57). In all three patients, the 
laboratory changes settled promptly with TLS treatment 
without the need for dose interruption (16). Subsequent 
experience with venetoclax in MCL suggests that TLS 
may be more prevalent and potentially fatal in this setting, 
leading to revised recommendations for dose escalation (58). 

None of the patients treated in the phase I first-in-human 
trial of venetoclax monotherapy in NHL had received prior 
therapy with a BTK inhibitor (BTKi). Unfortunately, in 
an analysis of outcomes among 20 patients treated with 
venetoclax monotherapy after failure of BTKi, the results 
are less encouraging with an ORR of 53% and CR rate of 
35%. This translates to a median PFS of only 3.2 months 
with a median OS of 9.4 months and median duration of 
response of 8.1 months. Among those who responded to 
venetoclax, however, the PFS was significantly improved 
(P=0.042) with the median PFS not reached (59). 

Despite the ability of venetoclax to induce high rates 
of durable remission in cases of previously treated CLL, 
relapse occurs in the majority of patients, with the median 
response duration in CLL patients harbouring del(17p) 
receiving venetoclax monotherapy being 33.2 months (60). 
Analysis of paired pre-venetoclax and progression samples 
from 15 patients with CLL progression identified a novel 
Gly101Val mutation in BCL2, appearing in 7 patients at 
disease progression, but not at treatment initiation (61). 
Surface plasmon resonance (SPR) assays revealed that 
the Gly101Val mutation reduced the binding affinity of 
venetoclax to BCL2 180-fold, thereby compromising the 
ability of venetoclax to displace pro-apoptotic proteins, 
such as BIM, BAX and BAK, from BCL2 and conferring 
acquired resistance both in vitro and in vivo (61). A search is 
currently underway for similar mutations in MCL.

Ibrutinib is an oral covalent inhibitor of Bruton’s 
tyrosine kinase (BTK), an essential component of the B cell 
receptor (BCR) signalling pathway, which has shown high 
clinical efficacy across a range of B cell cancers including 
CLL and MCL (62,63). In a phase 2 study of ibrutinib 
monotherapy in 111 patients with R/R MCL, an ORR of 
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68% (75/111), with a CR of 21% (23/111) and a median 
PFS of 13.9 months (62), was observed. A phase 3 trial 
demonstrated an ORR of 72%, with a CR of 19% and a 
median PFS of 14.6 months (64). Despite the significant 
efficacy of ibrutinib in MCL, primary resistance is seen in 
one-third of patients and acquired resistance seems to be 
universal. In CLL and WM, BTK mutations that reduce 
the binding affinity of ibrutinib for BTK, resulting in 
transient rather than irreversible inhibition, and PLCG2 
mutations that enable the activation of the BCR signalling 
cascade despite loss of BTK function, are commonly 
associated with acquired resistance to ibrutinib (65-68). 
In contrast, BTK and PLCG2 mutations are rarely seen 
in MCL patients who are resistant to ibrutinib therapy  
(64,69-72). Instead, primary resistance to ibrutinib in MCL 
is thought to arise due to mutations in the NF-κB pathway, 
including nonsense mutations in TRAF2 and deletions 
of TRAF3, which result in activation of the alternative  
NF-κB pathway, and activating CARD11 mutations that 
lead to constitutive activation of NF-κB signalling (71). 
Given that MCL patients who experience ibrutinib failure 
are known to have poor outcomes and exhibit poor response 
to salvage chemotherapy (73,74), ibrutinib monotherapy is 
unlikely to represent a cure for all patients (75). 

Since venetoclax and ibrutinib target distinct, presumably 
non-overlapping, survival pathways, the combination of 
the two agents is anticipated to provide added benefit  
(76-78). Cell cytotoxicity assays in five separate MCL cell 
lines confirmed strong synergistic effects of the ibrutinib-
venetoclax combination. Testing with primary MCL cells 
from two cases of recurrent MCL that displayed varying 
responses to single agents also demonstrated robust synergy 
of apoptosis induction (77). Interestingly, ibrutinib-induced 
dephosphorylation of BTK and AKT, which is known to 
be associated with survival and proliferation of malignant 
B cells, was enhanced upon co-treatment with venetoclax. 
Dual therapy also resulted in downregulation of at least 
one, often two, pro-survival BCL2 family proteins as well 
as augmentation of mitochondrial membrane depolarisation 
and poly(ADP-ribose) polymerase (PARP) cleavage, 
suggesting caspase activation. 

In addit ion to intr insic  abnormalit ies ,  such as 
overexpression of cyclin D1 and BCL2, extrinsic signalling 
from the tumour microenvironment is believed to be 
important for MCL growth, survival, and drug resistance, 
as it is in other B cell malignancies (79,80). Previously, 
CLL cells cultured on CD40L-expressing fibroblasts 
in the presence of IL-4 to mimic the lymph node 

microenvironment were shown to upregulate BCL-XL 
and BFL2/A1, resulting in an approximately 1,000-fold 
resistance to ABT-737 (81). In a different in vitro lymph 
node model of CLL, co-stimulation of primary CLL cells 
with CD40 and IL-4 resulted in full resistance to high-dose 
venetoclax through upregulation of BCL-XL (82). These 
results were subsequently recapitulated in both MCL cell 
lines and primary MCL cells. Specifically, it was shown that 
peripheral blood MCL cells, which express a low level of 
BCL-XL and are highly sensitive to venetoclax, exhibit an 
increase in BCL-XL protein level upon CD40 stimulation, 
and silencing of BCL-XL can overcome venetoclax 
resistance induced by CD40 stimulation (83). Previous 
studies suggest the involvement of the NF-κB signalling 
pathway in CD40-dependent BCL-XL upregulation (84). 
Mechanistically, ibrutinib disrupts BCR- and chemokine-
mediated adhesion of MCL cell lines to the tumour 
microenvironment, resulting in egress of malignant cells 
into the peripheral blood (85). The capacity of ibrutinib to 
drive MCL cells out of the protective microenvironment 
of lymph nodes and bone marrow, combined with the 
demonstration of decreased BCL-XL expression and 
increased venetoclax sensitivity in peripheral blood MCL 
cells, serves as a possible mechanistic explanation for the 
synergy observed with use of venetoclax and ibrutinib in 
combination. 

Given the strong pre-clinical rationale, the combination 
of venetoclax and ibrutinib is currently being investigated 
in several clinical trials internationally (NCT02471391, 
NCT02558816, NCT03295240, NCT02419560) for 
use in R/R MCL. The first study to be completed is the  
ABT-199 and Ibrutinib in Mantle Cell Lymphoma (AIM) 
study (NCT02471391). AIM is an open-label, single-group, 
phase 2 study of daily oral ibrutinib and venetoclax in 24 
patients with either R/R MCL (23 patients) or previously 
untreated MCL who could not undergo cytotoxic 
chemotherapy (1 patient). The study schema incorporates 
4 weeks of single-agent ibrutinib induction at a dose of  
560 mg per day prior to starting venetoclax, so as to reduce 
the tumour burden and decrease the risk of TLS. Patients 
then received venetoclax according to a dosing schedule 
that started at 50 mg per day and increased weekly in a 
stepwise fashion to 100 mg per day, then to 200 mg per day, 
and finally to 400 mg per day. Two cases of TLS occurred at 
the initial starting dose of venetoclax (50 mg daily), leading 
to revision of the schedule to commence venetoclax at  
20 mg daily. No further TLS cases were encountered at the 
20 mg starting dose of venetoclax.
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In this study of 24 patients with MCL, the median age 
was 68 years, meaning that many of the patients would 
not have been suitable for intensified therapy for their 
condition (86). Among the 23 patients who had received 
prior therapy for MCL, the median number of previous 
treatments was two with a range from none to six. Twelve 
patients had evidence of TP53 aberration in the form of 
del(17p), a TP53 mutation, or both, and 23 had either an 
intermediate or a high-risk MCL International Prognostic 
Index (MIPI) score (86). The primary end point of 
the study was the CR rate at week 16, which was 42% 
according to computed tomography (CT) and 62% as 
assessed by positron-emission tomography (PET). The CR 
rate measured by CT was higher than the historical result 
of 9% achieved with ibrutinib after 16 weeks of treatment, 
potentially implying improved efficacy. Absence of minimal 
residual disease (MRD) in bone marrow, as assessed by flow 
cytometry, was recorded in 67% (16/24) of patients, and in 
blood, as assessed by ASO-PCR, in 38% (86). The ORR 
at week 16 was 71% (17/24), with a CR of 62% (15/24). 
The estimated rate of PFS was 57% at 18 months (86). The 
potential superiority of combination therapy to ibrutinib 
monotherapy is being tested further in a new phase  
3 study comparing ibrutinib to the venetoclax-ibrutinib 
combination in R/R MCL (NCT03112174). 

Despite the potential revealed by the AIM study of 
ibrutinib plus venetoclax to bring durable CRs to patients 
with R/R MCL, it is nevertheless important to note that 
over 20% of patients enrolled in the AIM study exhibited 
primary resistance to the combination therapy, and a further 
10% relapsed following initial response with acquired 
resistance (86). Genomic characterisation of the clinical 
cohort revealed clear differences in the mutational profiles 
between responders and non-responders to combination 
therapy with ibrutinib and venetoclax (87). Mutations in 
ATM were present in most patients who achieved CR, 
and chromosome 9q21.1-p24,3 loss and/or mutations in 
components of the SWI-SNF chromatin-remodelling 
complex were present in all patients with primary resistance 
and two-thirds of patients with relapsed disease. The ability 
to characterise these genomic determinants of treatment 
response in real-time using circulating tumour DNA 
(ctDNA) testing was subsequently revealed. Together, these 
findings establish a molecular rationale to guide patient 
selection for ibrutinib plus venetoclax, and provide a means 
by which treatment response and emerging resistance 
could be dynamically monitored in the clinic. In addition, 
functional modelling showed that impairment of the SWI-

SNF complex resulted in transcriptional upregulation of 
BCL-XL, leading to the hypothesis that selective BCL-XL 
inhibitors might produce a synergistic effect when used in 
combination with venetoclax and ibrutinib in patients with 
the resistance phenotype as identified by ctDNA testing (87).

Previously, anti-CD20 monoclonal antibodies have been 
shown to be able to counteract resistance to venetoclax 
induced by microenvironmental signals through inhibition 
of the NF-κB axis, resulting in downregulation of BCL-
XL (88,89). In an ex vivo coculture model for primary 
MCL cells, the type II anti-CD20 monoclonal antibody 
obinutuzumab, but not the type I anti-CD20 monoclonal 
antibody rituximab, demonstrated the capacity to counteract 
NF-κB-induced upregulation of BCL-XL, and thus the 
consequent loss of mitochondrial priming and sensitivity 
to venetoclax (90). This is consistent with previous studies 
showing enhanced direct and immune effector cell-
mediated B-cell cytotoxicity in lymphoid tissue treated with 
obinutuzumab compared with rituximab (91,92). Given 
that the synergy observed with ibrutinib plus venetoclax is 
at least in part due to the ability of ibrutinib to indirectly 
mediate down-modulation of BCL-XL upon egress of MCL 
cells into the peripheral blood, these results predict that use 
of venetoclax with obinutuzumab, in addition to ibrutinib, 
may lead to improved clinical responses. Obinutuzumab 
has already demonstrated promising clinical activity as a 
single agent in MCL (93), and in contrast to bortezomib, 
is associated with limited in vivo adverse effects due to its 
specificity for B cells. The in vivo efficacy of venetoclax-
ibrutinib-obinutuzumab triple therapy is currently being 
explored in the ongoing Obinutuzumab, GDC-0199 Plus 
Ibrutinib in Relapsed/Refractory Mantle Cell Lymphoma 
Patients (OAsIs) trial (NCT02558816) (94).

As exemplified by trials of the venetoclax-ibrutinib 
combination, while venetoclax monotherapy has substantial 
clinical efficacy in MCL, better results can clearly be 
obtained through use of this therapy in combination with 
other agents. The ideal partner drugs that optimise clinical 
response and minimise dose-limiting toxicity are yet to 
be fully elucidated and the sequencing of such therapies 
is also an area that requires more robust clinical data. In 
diseases such as FL and DLBCL, where the results of 
venetoclax monotherapy are inferior, venetoclax has already 
been tested in combination with chemoimmunotherapy in 
multiple clinical trials (NCT03064876, NCT03036904, 
NCT02187861). In an effort to improve on already 
impressive results in MCL, it is likely that future studies 
will build on venetoclax with or without ibrutinib in 
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combination with immunotherapy and standard cytotoxic 
chemotherapy. 

Conclusions

MCL is a subtype of NHL characterised by rapid 
clinical progression and poor response to current 
therapeutic protocols. While the introduction of high-
dose chemoimmunotherapy with autologous stem cell 
transplantation has led to significant improvements in the 
outcome among younger fitter patients, the treatment of 
elderly patients, patients with R/R MCL, and patients with 
TP53 aberrations remains an ongoing area of unmet need, 
highlighting the need for new individualised therapeutic 
approaches. Venetoclax, while a promising new agent in the 
armamentarium to treat MCL, is unlikely to be the answer 
for all patients due to limited PFS or the development of 
secondary resistance. Combination therapy with ibrutinib 
increases the depth of clinical response and may be 
associated with longer duration of PFS. Whether this can be 
further improved by the addition of monoclonal antibodies 
remains an open question. Ultimately, understanding the 
reasons for the development of resistance will help to 
identify patients who are candidates for intensified therapy 
and may suggest additional rationally targeted approaches 
for managing this difficult and needy group of patients.
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