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Introduction

Allogeneic hematopoietic stem cell transplantation 
(HSCT) was the first example of cellular immune therapy 
to treat cancer. Initially, HSCT was used to restore 
hematopoiesis following high dose chemotherapy and 
radiation given to eradicate cancer cells (1). However, it 
was soon discovered that the allogeneic immune system has 
anti-tumor activity, now termed “graft-versus-leukemia” 
(GVL) (2,3), facilitating the development of reduced-
intensity conditioning regimens that are more reliant on 
GVL for therapeutic benefit. In circumstances where 
sufficient GVL cannot be achieved by discontinuation of 
immunosuppression, donor leukocyte infusion (DLI) may be 
effective at enhancing GVL and providing disease control. 

This observation, along with the observation of increased 
relapse following T-cell depleted HSCT, confirmed the 
importance of T lymphocytes in tumor cell eradication 
by GVL. While SCT can be potentially curative, high 
incidence of morbidity and mortality compromises 
outcomes and limits feasibility of this treatment in patients 
with comorbidities. In addition, cancer cells can escape 
immunosurveillance mediated by allogeneic T cells, thereby 
leading to disease relapses. Therefore, a highly potent, 
engineered cell therapy that is specifically designed to 
target cancer cells without replacing the entire marrow has 
the potential to substantially improve the effectiveness of 
immune based therapy for lymphoma. 

T cells are attractive as anti-cancer agents for several 
reasons including potent activity against tumor cells, robust 
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potential for in vivo self-expansion, antigen-specificity, 
and the ability to generate immune memory providing the 
possibility for long-term tumor surveillance. Following 
many years of research, various adoptive T-cell therapies 
have been employed in the treatment of cancer. In addition 
to DLI, ex vivo activated tumor infiltrating lymphocytes 
(TILs) and T cells from blood expanded ex vivo against 
tumor-associated antigens have all been used therapeutically 
to varying degrees of success. All of these approaches rely 
on the natural T cell repertoire provided by the endogenous 
T cell receptor (TCR) for activity. Advances in genetic 
engineering have enabled the efficient transfer of genes 
encoding TCRs recognizing selected target antigens from 
processed cell surface or intracellular proteins into T cells. 
This results in redirected specificity and potent anti-tumor 
activity (4-6). However, TCR-based gene modified adoptive 
therapy is major histocompatibility complex (MHC) 
restricted thus limited to a subset of patients expressing 
a specific MHC type (7). An alternative type of antigen 
specific receptor that has proven to be extremely effective 
in clinical trials is the chimeric antigen receptor (CAR) 
(8,9). We will review the structure of CAR, the results 
of landmark clinical trials utilizing CAR T cells for the 
treatment of lymphoma, toxicities of CAR T cell therapy, 
the causes of failure of CAR T cell therapy, and new 
developments to overcome those limitations. 

Introduction to CARs

CARs are artificial constructs that, when introduced into 
T cells, enable recognition and killing of target cells in 
highly specific and MHC independent manner. This is 
accomplished through an antigen recognition motif that 
is typically derived from a target-specific antibody that is 
fused to an intracellular CD3 signaling domain (CD3ζ), 
termed “first-generation” CAR. Incorporation of a T-cell 
costimulatory (e.g., CD28, 4-1BB) domain was shown to 
dramatically increase the potency of CAR T cells such that 
the majority of clinical trials use these “second-generation” 
constructs (10-12). “Third-generation” CARs that 
incorporate more than one costimulatory domain have been 
tested but it remains unclear as to whether these constructs 
provide advantages over second-generation constructs 
(Figure 1). The engineered nature of CARs allows for a high 
degree of flexibility and provides opportunities for further 
modifications to control CAR T cell behavior (7,11,13).

The extracellular domain of CAR consists of the antigen 
recognition motif, usually in the form of a single chain 

variable fragment (scFv) derived from an antibody. In 
addition, many CARs also contain an extracellular hinge/
linker region that provides some distance from the cell 
membrane to the antigen-binding region. Studies suggest 
the immunological synapse distance formed between the 
CAR and the target antigen may impact CAR functionality 
(14-16). For example, maximal efficacy of CD22 CAR 
was only obtained when CD22 was modified so that the 
target epitope was positioned in close proximity to the cell 
membrane (17). Although scFv binding domains are most 
frequently used in CAR constructs, in theory, any motif that 
binds to a tumor target may be incorporated into CARs (18).  
It is likely that there will be other CAR constructs 
developed in the future that use domains other than scFv, 
given the challenges associated with scFv folding. 

The intracellular domain of “first-generation” CARs 
contains only the CD3ζ signaling domain. Considering 
the role of costimulatory molecules in T cell activation, 
several groups developed second-generation of CARs that 
incorporates the co-signaling motifs derived from CD28 
or 4-1BB intrinsically in the CAR construct, thereby 
ensuring that both signal 1 (CD3ζ signaling) and signal 2  
(costimulatory signaling) are available to fully activate 
the CAR T cell (19,20). Subsequently, a number of other 
signaling motifs such as ICOS (21,22) and CD27 (23,24) 
have been tested. Both CD28 and 4-1BB costimulation 
induce IL-2 production by T cells (25-27), enhance survival 
of activated T cells (28,29), and support cytotoxic activity 
of T cells (30-33). Depending on how the CAR is designed, 
the engineered CAR T cells take on the phenotype of the 
T cells for which it is engineered. For example, embedding 
CD28 costimulatory domain into the CAR was shown to 
make CD8+ CAR T cells behave like effector memory T 
cells, while CD8+ CAR T cells with 4-1BB signaling motif 
in the CAR behaves like central memory T cells (34). When 
CAR T cells are engineered with ICOS signaling domain, 
the CAR T cells have a Th1/Th17 T cell phenotype (22). 
When regulatory T (Treg) cells were used to generate 
CAR T cells, these cells maintained Treg functions (35). 
Constructing third-generation CAR to include both 
CD28 and 4-1BB signaling domains in tandem seems to 
provide an additive effect on CAR T cell proliferation (12), 
with predominant number of CAR T-cells being CD8+ 
effector memory T cells (12). Therefore, CAR T cells may 
be engineered to take on the desired T cell phenotype 
(22,35,36). 

CAR T cell potency may be enhanced by expanding CAR 
T cell specificity and/or by enhancing antigenic stimulation. 

http://www.discoverymedicine.com.ezproxy.nihlibrary.nih.gov/category/research-technology/genetic-engineering/
http://www.discoverymedicine.com.ezproxy.nihlibrary.nih.gov/category/research-technology/genetic-engineering/
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In fact, CAR T cells require certain threshold of interaction 
for the target antigen for activation (37). One method for 
improving CAR T cell specificity is to target multiple tumor 
associated antigens simultaneously, as demonstrated by bi-
specific and/or tandem CARs (38,39). The tandem CAR T 
cells also showed less expression of exhaustion markers PD-1, 
LAG3, and TIM3 when compared to other CAR T cells (40). 

Combination therapy involving CAR T cells may also 
be used to either increase the tumor antigen expression of 
the tumor, enhance CAR T cell survival and persistence, or 
inhibit CAR T cell inhibitors. Poor antigenic stimuli may be 
prevailed by either amplifying the signal transduction cascade 
(for example, costimulatory molecules) or by enhancing 
synapse formation. Kuramitsu et al. demonstrated that 
lenalidomide enhances CAR T cell toxicity by enhancing 
CAR-antigen immunological synapse (41). Otahal et al. 

showed that lenalidomide increased IFNγ production upon 
antigenic stimulation in CAR T cells in a dose-dependent 
manner (42). CAR T cell survival and persistence appears to 
be essential for prolonged anti-tumor activity. T cell growth 
factors, such as IL-2, IL-7, and IL-15, etc., may be co-
infused/co-expressed with CAR T cells to enhance CAR T 
cell survival and persistence (43). Hurton et al. demonstrated 
co-expressing membrane bound form of IL-15 aids CAR 
T cell persistence in addition to promoting memory stem 
cell phenotype (44). Co-administering CAR T cells with 
ibrutinib has been explored and may be a highly effective 
treatment that targets both surface antigen (CD19) as well 
as intracellular (BTK signaling) inhibition of tumor survival 
and growth (45). Checkpoint inhibitors, such as PD-1/
PD-L1 interactions, are upregulated following antigenic 
stimulation on T cells and function to prevent overt T cell 

Figure 1 Structure of chimeric antigen receptor (CAR). (A) Main components of CAR are Ag recognition site comprised of single variable 
fragment (scFv) of antibody, hinge region, transmembrane domain, and T-body that consist of signaling molecule CD3ζ that activate T cell, 
and various numbers of costimulatory molecules depending on generation of CAR; (B) first-generation CAR consists of scFv, hinge region, 
transmembrane domain, signaling CD3ζ molecule, and lacks costimulatory molecule. Second-generation CAR consists of scFv, hinge region, 
transmembrane domain, one costimulatory molecule (CD28 or 4-1BB), and signaling CD3ζ molecule. Third-generation CAR consists of 
scFv, hinge region, transmembrane domain, two costimulatory molecules (CD28 and 4-1BB) and signaling CD3ζ molecule.
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response (46,47). Clinical studies are underway to see if  
co-administering checkpoint inhibitor antagonists with CAR 
T-cells may prolong CAR T-cell persistence, and survival 
(Table 1). 

Clinical trials utilizing CAR T cells in the 
treatment of lymphoma

There are an estimated 72,580 new cases of non-
Hodgkin lymphoma (NHL) diagnosed every year, with 
an estimated 20,150 deaths (SEER database, 2016). Up 
to 85% of NHL is B-cell lymphoma, including diffuse 
large B-cell lymphoma (DLBCL), follicular lymphoma 
(FL), primary mediastinal B-cell lymphoma (PMBCL), 
and mantle cell lymphoma (MCL). With conventional 
immune-chemotherapy, many patients with NHL 
are cured. However, despite the numerous drugs and 
combinations available, one third of patients eventually 
relapse due to incomplete eradication of tumor cells (48). 
With current treatments, relapsed and/or refractory 
(R/R) aggressive B-cell NHL has poor outcomes (49).  
Allogeneic SCT is a treatment option for relapsed/
refractory patients, however, it carries high treatment-
related mortality, and many patients are not able to tolerate 
it (50-52). The salvage therapy for R/R NHL is not 
effective and requires development of new therapies. 

The  succes s  o f  CAR T-ce l l  therapy  has  been 
demonstrated with CD19-directed CAR T cells, namely 
with pediatric and adult acute lymphoblastic leukemia 
(ALL), with complete remission (CR) of near 90% (53) 
and led to the FDA approving CTL019 (Novartis, Basel, 
Switzerland) for treatment of pediatric B-ALL. Although 
CD19-directed CAR T cell therapy has less impressive 
effect on slower growing CD19 positive B-cell malignancies 
such as NHL, CAR T cells may offer a better prognosis for 
relapsed patient with NHL than chemotherapy. In addition 
to CD19, there are growing numbers of targets for NHL 
and HL that have been validated with Ab-based therapy, 
and are being translated as targets for CAR-based therapy 
for patients with lymphomas. 

Many clinical trials utilizing CAR T cells demonstrated 
the critical importance of lymphocyte-depletion prior 
to cell infusion (7,54-57), and showed that lymphocyte-
depletion enhanced in vivo persistence of CAR T cells. 
The increased proliferation and persistence of adoptively 
transferred T cells may involve the elevation of serum 
cytokines such as  IL-15 and IL-7 result ing from 
lymphodepletion (58). 

CAR T cells targeting CD19 for B-cell lymphoma

The results of selected published clinical trials utilizing 
CD19 CAR T cells for patients with B-cell lymphoma 
are summarized in Table 2. In 2010, a clinical trial 
demonstrated significant efficacy of CD19 CAR T cell 
therapy in lymphoma. A patient with advanced FL received 
2 doses (1×108 on day 1, and 3×108 cells with IL-2 on 
day 2) of autologous CD19/CD28 CAR T cells after 
lymphodepletion with cyclophosphamide and fludarabine. 
This patient previously received multiple lines of chemo- 
and immune-therapy (EPOCH-R, PACE, idiotype 
vaccine, ipilimumab) without response. With CD19 
CAR T cell treatment, the lymphoma regressed and the 
patient achieved partial remission (54). B-cell aplasia lasted  
32 weeks. Based on this encouraging result, additional 
patients with NHL were enrolled on this protocol 
(NCT00924326). Interim analysis was reported in 2012 
demonstrating the efficacy of CD19/CD28 CAR T cells in 
indolent lymphomas: chronic lymphocytic leukemia (CLL) 
(n=4), FL (n=4), and splenic marginal zone lymphoma 
(MZL) (n=1). Six of 8 enrolled patients achieved objective 
response (three of four with CLL; 2 of 3 with FL) lasting 
7–18+ months (59). Subsequent analysis reported in 2015 
showed 15 more patients with B-cell malignancies who were 
treated with CD19 CAR T cells after failing 1–12 previous 
lines of therapy: 9 patients with DLBCL, 2 patients with 
indolent lymphomas, and 4 patients with CLL. At the 
time of publication, out of 13 evaluable patients, 12 (92%) 
achieved an objective clinical response, with 8 (62%) 
achieving complete response durable to >23 months (60). 
Most recently, Kochenderfer et al. reported results of 
additional 22 patients: DLBCL (n=19), FL (n=2), and MCL 
(n=1), who relapsed after undergoing 1–7 lines of therapy, 
including allogeneic SCT. Overall response rate (ORR) 
was 73%, with 55% CR, and 18% of partial response (PR), 
lasting 1–18+ months (61). 

Same CAR construct was used by Kite Pharma in a 
phase I (ZUMA-1) multicenter study (NCT02348216). 
In this study, seven patients with refractory DLBCL were 
treated with CD19/CD28 CAR T cells after receiving 
cyclophosphamide and fludarabine for lymphodepletion. 
Overall response was seen in 5 (71%) patients, and 4 
patients achieved CR (57%) for up to 12+ months (62). 

Wang et al. reported the results from two phase I clinical 
trials (NCT 01318317, NCT01815749) in lymphoma, 
coined NHL1 and NHL2, respectively (63). NHL1 study 
was designed to utilize autologous central memory enriched 
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T cells (Tcm) to generate CD19 CAR T cells while NHL2 
study was designed to utilize CD4/C8 selected Tcm cells 
to generate CD19 CAR T cells. In both studies, patients 
with relapsed/refractory NHL received CD19 CAR T 
cells 2 days following autologous SCT. In the NHL1 
trial, eight patients (7 with DLBCL, and 1 with MCL) 
were treated with CD19 CAR T cells. Four of 8 patients 
were progression free for 2 years. In the NHL2 trial,  
6 out of 8 patients (4 with DLBCL, and 4 with MCL) were 
progression free at 1 year (63). 

Turtle et al. combined CD4+ CD19 CAR T cells with 
CD8+ CD19 CAR T cells at 1:1 ratio to treat patients 
with NHL (NCT01865617). Total of 32 patients were 
enrolled who received median 5 lines of therapy including 
autologous and allogeneic SCT (11 de novo DLBCL,  
11 DLBCL transformed from FL, 4 MCL, 6 FL). Twelve 
patients were lymphodepleted with cyclophosphamide 
alone prior to CAR T cells and achieved 50% ORR and 
8% CR. After modifying the lymphodepleting regimen by 
combining cyclophosphamide with fludarabine, additional 
20 patients were enrolled with ORR 72%, and 50% CR (64). 
Overall, among 30 evaluable patients, 19 (63%) had ORR, 
and 10 (33%) achieved CR. 

Phase II trial with CTL019 in heavily pretreated, 
relapsed/refractory NHL patients (15 DLBCL, 13 FL, 
and 2 MCL) is ongoing at University of Pennsylvania. The 
interim analysis showed ORR of 47% in DLBCL (6 CR,  
1 PR), 73% in FL (7 CR, 1 PR), and 50% in MCL (65).

Abramson et al. reported (ASH 2016) their result of 
phase I study of CD19 CAR T cell (JCAR017) in relapsed/
refractory NHL (11 DLBCL and 1 MCL were treated). 
Median number of previous therapy was 5, including auto 
and allogeneic SCT. In DLBCL group 9/11 (82%) OR, 
8/11 (73%) CR, 1/11 (9%) PR, and 2/11 (18%) progressive 
disease (PD) were seen at the time of assessment. The MCL 
patient had PD at day 29 (66).

Autologous T cell engineering has been the most heavily 
investigated source of T cells in clinical trials. However, 
donor-derived CAR T cell is an attractive modality to 
generate “off shelf” product to avoid CART cell production 
failure, wait time for patient and, as such, is being actively 
investigated. Kochenderfer et al. reported utilization of 
donor-derived engineered CD19/CD28 CAR T cells 
in patients with various B-cell malignancies who had 
undergone previous allogeneic SCT (67). Lymphocytes 
were collected from the donors; CD19/CD28 CAR T cells 

Table 2 Summary of selected published CD19 CAR T cell trials for patients with NHL

References
Lymphoma types [patient 
number]

CAR T cells Response rate [%]

Kochenderfer et al. 2010 FL [1] Autologous CD19/CD28 ORR, 1/1 [100]; CRR, 0/1 [0]

Kochenderfer et al. 2012 FL [4], MZL [1] Autologous CD19/CD28 ORR, 4/4 [100]; CRR, 0/4 [0]

Kochenderfer et al. 2015 DLBCL [9], indolent NHL [1], 
MZL [1]

Autologous CD19/CD28 ORR, 8/9 [89]; CRR, 5/9 [56]

Kochenderfer et al. 2017 DLBCL [19], TFL [4], FL [2], 
PMBCL [2], MCL [1]

Autologous CD19/CD28 ORR, 16/22 [73]; CRR, 12/22 [55]

Locke et al. 2017 (ZUMA-1) DLBCL [7] Autologous CD19/CD28 ORR, 5/7 [71]; CRR, 4/7 [57]

Wang et al. 2016 (NHL-1) DLBCL [7], MCL [1] Autologous CD19 first-generation (Tcm) ORR, 7/8 [88]; CR, 5/8 [63]

Wang et al. 2016 (NHL-2) DLBCL [4], MCL [4] Autologous CD19/CD28 (CD4/CD8 Tcm) ORR, 8/8 [100]; CR, 8/8 [100]

Turtle et al. 2016 DLBCL [22], MCL [4], FL [6] Autologous CD19/CD4-1BB ORR, 19/30 [63]; CR, 10/30 [33] 
(two patients unevaluable)

Schuster et al. 2015 DLBCL [15], FL [13], MCL [2] Autologous CD19/CD4-1BB ORR, 16/30 [53]; CR, 13/30 [43]

Abramson et al. 2016 
(TRANSEND)

DLBCL [11], MCL [1] Autologous CD19/4-1BB (1:1 CD4, CD8) ORR, 9/12 [75]; CR, 8/12 [67]

CAR, chimeric antigen receptor; MZL, marginal zone lymphoma; DLBCL, diffuse large B-cell lymphoma; NHL, non-Hodgkin lymphoma; 
PMBCL, primary mediastinal B-cell lymphoma; FL, follicular lymphoma; TFL, transformed FL; MCL, mantle cell lymphoma; Tcm, central 
memory enriched T cells; ORR, overall response rate; CRR, complete response rate; CR, complete remission.
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were generated and infused in 10 patients with DLBCL 
(n=2), CLL (n=4), or MCL (n=4). Eight of 10 patients had 
overall response, 2 with PR, and 6 with stable disease (SD). 
In patients who relapsed after allogeneic SCT, DLI is a 
common practice to induce GVL for disease control (68);  
however, approximately one third of the patients develop 
graft vs. host disease (GVHD). Remarkably, none of the 
patients treated with donor-derived CAR T cells experience 
GVHD. In subsequent report, consisting of 20 total 
patients treated with donor-derived CD19/CD28 CAR 
T cells [NHL (n=10), CLL (n=5), ALL (n=5)], 8 (40%) 
patients demonstrated an objective response, with 6 (30%) 
patients achieving CR. Again, no patient experienced new 
acute GVHD after CAR T cell infusion (69). Although 
the potential benefit of using allogeneic CAR T cells is 
great, given the presence of native TCR in CAR T cells, 
the possibility of GVHD is still present (70). Certainly, 
targeted insertion of the CAR construct into the TCR loci 
would likely prevent GVHD (71); however, allogeneic CAR 
T cells may not be as potent due to the potential host vs. 
therapy mediated elimination of the allogeneic CAR T cells. 
While early studies with allogeneic CAR T cells show great 
promise, extensive evaluation and fine-tuning is warranted 
in the application of donor-derived/allogeneic CAR T cells. 
The results of published trials are summarized in Table 2.

CAR T cells targeting other antigens

CD20 is an attractive target due to the availability of 
effective monoclonal antibody rituximab that is widely 
used in clinical practice. Jensen et al. reported in 2010 the 
results of two patients with DLBCL treated with first-
generation CD20 CAR T cells (72). Patients did not have 
any adverse event attributable to CD20 CAR T-cells. CD20 
CAR T cells were administered following autologous 
SCT. Nevertheless, both patients achieved CR (72). 
Subsequently, Till et al. reported results of four patients  
(3 MCL, 1 FL) who received third-generation CD20 CAR 
T cells that consist of both CD28 and 4-1BB costimulatory 
molecules. One patient withdrew from the study. Two 
patients without evaluable diseases remained progression 
free at 12 and 24 months at the time of publication. One 
patient had PR, however relapsed at 12 months after 
CD20 CAR T cell infusion (73). Another phase I clinical 
trial treated 16 patients with NHL [7 NHL: 4 DLBCL, 
2 lymphoplasmacytic lymphoma (LPL), 1 MCL; 2 CLL; 
7 MM] with κCAR T cells that target immunoglobulin κ 
chain expressing B-lymphomas. Two patients with DLBCL 

achieved CR, two patients with LPL achieved PR, one 
patient with CLL had no response, one had SD for 6 weeks. 
Of seven patients with MM, 4 had stable disease lasting  
2–17 month (74). 

Targeting CD30 to treat HL and anaplastic large cell 
lymphoma (ALCL) has shown success with drug conjugated 
monoclonal antibodies, brentuximab vedotin. Utilizing 
CD30 CAR T cells is an attractive approach to avoid 
side effects of vedotin, and increase duration of response. 
Ramos et al. reported results of phase I study, utilizing 
second-generation CD30 CAR T cells. Nine patients with  
R/R HL [7], or ALCL [2] were treated with CD30 CAR T 
cells, 5 patients with HL had overall response (2 CR lasting 
2.5 years, and 2 years; 3 transient SD), and 1 patient with 
ALCL achieved CR for 9 months (75). 

There are over 200 clinical trials registered at www.
clincaltrials.gov as of September 2017, utilizing CAR T 
cell therapy for lymphoma, and targeting various antigens 
that express on lymphoma. Table 1 summarizes select 
ongoing phase I/II studies utilizing novel CAR T cells 
targeting new antigens and/or used in combination with 
immunomodulatory drugs that are currently enrolling 
patients. 

Toxicity of CAR T cell therapy

The remarkable response rate to the treatment with CAR 
T cell therapy comes with substantial toxicities. These 
toxicities are attributable to the lymphodepleting regimen, 
potential side effect of utilizing retro-viral transduction 
for genetic manipulation, as well as toxicities specifically 
attributable to CAR T cells.

Toxicities resulting from lymphodepleting agents 
such as myelosuppression, nausea, vomiting, diarrhea, 
myalgia, and fatigue are expected to be transient and are 
easily managed with appropriate supportive care. Tumor 
lysis syndrome (TLS) following lymphodepletion and 
CAR T cell infusion is well-established complication, 
especially with bulky disease. TLS may be managed with 
appropriate supportive care. Potential side effects of gene 
therapy include insertional mutagenesis and the emergence 
of replication-competent retrovirus (RCR). Insertional 
mutagenesis is theoretically possible due to the promiscuity 
of retroviral vectors, and it has been observed, e.g., in the 
setting of infants treated for X-linked severe combined 
immunodeficiency (X-SCID) using retroviral vector-
mediated gene transfer into CD34+ bone marrow stem cells. 
Genetic manipulation using retroviral vectors to transduce 
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mature T cells seems to be a safe procedure and will require 
continued follow-up for confirmation. Additionally, RCR 
emergence has not been observed with CAR T cell therapy 
to date. Another expected side effect of CD19 CAR T cell 
therapy is the elimination of B-cells, so called “on target off 
tumor effect”. B-cell aplasia sometimes serves to indicate 
CD19 CAR T cells are expanding/persisting and may be 
easily managed with monthly intravenous immunoglobulin 
(IVIG) infusions. 

Cytokine storm and neurotoxicity are complications 
that are unique for immunotherapy, particularly CAR 
T cell therapy. The cytokine release syndrome (CRS) 
is defined clinically by group of symptoms including, 
but not limited to fever, muscle pain, nausea, diarrhea, 
headache, tachycardia, hypotension, rash, shortness of 
breath, coagulopathy, hemorrhage, thrombosis, elevated 
liver enzyme, pancytopenia that can lead to multi-organ 
failure requiring admission to the intensive care unit with 
vasopressor support, and intubation for respiratory failure. 
It is believed to be caused by the release of cytokines from 
cells following intense immune activation. A rapid rise in 
serum cytokine levels (cytokine storm) has been associated 
with systemic inflammatory response syndrome (SIRS), 
potentially leading to multi-organ dysfunction (MOD) 
(76,77). Early studies with CAR T cell therapy reported 
elevation of inflammatory cytokines, including IL-6, IFN-γ, 
IL-2, IL-7, and TNF (76). Targeting these cytokines, 
particularly IL-6, was shown to prevent/treat potentially 
fatal CRS (77). The rate and degree of CRS varies between 
clinical trials, with all grade CRS approaching 90% (76,77). 
Comparison is challenging due to differences in constructs 
used by various clinical trials, differences in dosing of 
the cells, differences in lymphodepleting regimens, and 
differences in grading system used to grade CRS. 

Many clinical trials, particularity with CD19 CAR T cells 
have reported transient neurologic symptoms including 
cognitive impairment, confusion, visual hallucinations, 
lack of responsiveness to commands, ataxia, aphasia, 
tremors, seizures, and cerebral edema. Although the rate 
of neurotoxicities varies from 0% to over 50% (76), there 
were reports of grade 5 neurotoxicities in B-ALL, as well 
as in NHL patients. The exact mechanism of neurotoxicity 
is not fully understood. It has been reported that central 
nervous system (CNS) does not express CD19 antigen (78), 
and appears that neurotoxicity happens even in the absence 
of disease in CNS. Neurotoxicity after CAR T cells could 
occur with CRS as well as without. It is possible that T cells 
actively traffic to CNS, or cytokine produced by activated 

immune cells diffuse to CNS. More studies are required to 
understand the mechanism, prevention and treatment of 
neurotoxicity.

In the multicenter ZUMA-1 study utilizing CD19/CD28 
CAR T cells for DLBCL, transformed FL (TFL), PMBCL, 
grade ≥3 CRS and neurotoxicity occurred in 13% and 28%, 
respectively, among 101 patients who received CAR T cells (79).  
In the JULIET study utilizing CD19/4-1BB CAR T cells 
for R/R DLBCL, among 51 patients, CRS occurred in 57% 
of the patients, with grade ≥3 CRS occurring in 26% of the 
patients, 16% received tocilizumab for the management of 
CRS, 13% of patients developed grade ≥3 neurotoxicity (80).  
In TRANSCEND study utilizing CD19/4-1BB CAR T 
cells, 28 patients were treated and evaluated, 35% patients 
developed grade 1–2 CRS; however, none of them had 
grade ≥3 CRS. One patient received tocilizumab for 
management of CRS, 5 patients developed neurotoxicity 
(17%), 4 of them had grade ≥3 (14% patients). All events 
resolved. Generally, the onset of CRS and neurotoxicity 
were observed at 5–11 days, though it varied depending on 
construct utilized (81).

Early CRS and neurotoxicity intervention consists of 
steroids and/or the administration of anti-IL6R monoclonal 
antibody (mAb) therapy (tocilizumab). Interestingly, the 
severity and frequency of CRS is lower with lymphomas in 
comparison with leukemia; nevertheless, grade 3 or higher 
toxicity is reported in >60% of the patients. Together, while 
much of toxicities associated with CAR T cell therapy 
are manageable, finding ways to mitigate these toxicities 
without compromising efficacy would dramatically improve 
CAR T cell therapy. 

Failure of CAR T cell therapy in lymphoma 

While ongoing clinical studies demonstrate excellent 
response with CAR T cell therapy, lack of response or 
relapse are reported. The cause for ineffective CAR T cell 
therapy is multifactorial including immunomodulation 
by tumors, CAR T cell design, and tumor heterogeneity/
plasticity (82). Cancer-immunosurveillance (83) is a crucial 
component of preventing cancer formation (84-86).  
The same mechanisms by which cancer cells escape 
immunosurveillance appear to play a role in suppressing/
escaping CAR T cell therapy. For example, checkpoint 
inhibitors are known to suppress anti-cancer immune 
responses (87) and limit CAR T-cell efficacy (88,89). In 
addition, loss of target antigen has been well observed with 
CAR T cell therapy (82,90-93). Sotillo et al. (94) showed 
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that under CD19 CAR T cell evolutionary pressure, 
leukemic cells develop mutations, undergo alternative 
splicing of CD19 gene, and is no longer recognized by CAR 
T cells. Jacoby et al. demonstrated that leukemic cells lose 
CD19 expression and develop resistance to CD19 CAR T 
cells (82). Lastly, an intriguing phenomenon was observed 
when in the presence of CAR T cells, leukemic cells were 
able to completely switch from lymphoid to myeloid 
lineage, demonstrating even greater plasticity of cancer cells 
than was original thought (82). 

Lymphoma cells are uniquely more challenging targets 
for CAR T cells than leukemia cells. Leukemia cells 
circulate in the marrow and peripheral blood, therefore are 
easily accessible for CAR T cells. In contrast, CAR T cell 
have limited access to lymphoma due to physical barrier, 
limited blood vessels in solid tumor, as well as the down-
regulation of integrins and selectins that are critical for 
T cell migration. In addition, tumor microenvironment 
inhibits CAR T cells by releasing immunosuppressive 
cytokines and ligands such as PD-L, TGF-B, and IL-10 (95). 

Loss or down-regulation of CD19 antigenic target 
and lineage switching are well documented in ALL (82); 
however, this has not been observed in lymphoma to date. 
It is possible that as more patients with lymphoma undergo 
CD19 CAR T cell therapy, we will see CD19 antigenic 
loss as well. It is also possible that while lymphomas are 
terminally differentiated tumors, leukemia has greater 
plasticity due to the tumor rising from less committed 
population of cells. Lymphomas have aberrant cell survival 
signal transduction pathways, including Bcl2, Bcl6, 
BRAF, TP53, NRAS, PI3K/AKT/mTOR signaling, BTK 
signaling, LYN/SYK signaling, JAK2/STAT, and PKCβ 
signaling pathways (96,97). Relapsed/refractory NHL cells 
resistant to apoptotic signals presented by native immune 
cells, and cytotoxic drugs, in addition to activation of pro-
survival signaling, could also make lymphoma more resistant 
to CAR T cell therapy. Identifying key mechanism(s) 
of lymphoma escape from CAR T cell treatment would 
contribute to designing more effective CAR T cells. 

Conclusions

The advent of genetically modified immunotherapy has 
created much enthusiasm and hope for difficult to treat 
ailments. Several recent clinical trials have demonstrated 
success of engineered T cell therapies for the treatment 
of B cell malignancies. Although there are still challenges 
in the treatment of lymphoma, CAR T cells provide new 

hope for relapse/refractory lymphomas. The downside to 
the therapy is that patients who receive CAR T cells are at 
risk for serious and potentially life-threatening side effects 
such as CRS and neurotoxicity. Therefore, therapy should 
be administered in large centers that have experience 
and built-in infrastructure for CAR T cell treatment. 
CAR T cell therapy combines cell therapy, gene therapy, 
and immunotherapy features. The real-world challenges 
include logistics surrounding CAR T cell therapy, time for 
manufacturing of cells, and high cost of therapy. Promising 
results utilizing new targets, development of bispecific 
CARs, and introduction of combination therapy will 
improve the response rate, in addition to decreasing rate of 
relapse. One important question that needs to be addressed 
is the duration of response and the role of SCT after CAR 
T cell therapy, and whether CAR T cell therapy is a curative 
treatment option for lymphoma or a bridge to SCT. Many 
strategies, and clinical trials are now under evaluation to 
enhance this therapy’s success and make it available to many 
more patients.
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